19 research outputs found

    dynamAedes: a unified modelling framework for invasive Aedes mosquitoes

    Get PDF
    Mosquito species belonging to the genus Aedes have attracted the interest of scientists and public health officers because of their capacity to transmit viruses that affect humans. Some of these species were brought outside their native range by means of trade and tourism and then colonised new regions thanks to a unique combination of eco-physiological traits. Considering mosquito physiological and behavioural traits to understand and predict their population dynamics is thus a crucial step in developing strategies to mitigate the local densities of invasive Aedes populations. Here, we synthesised the life cycle of four invasive Aedes species (Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus) in a single multi-scale stochastic modelling framework which we coded in the R package dynamAedes. We designed a stage-based and time-discrete stochastic model driven by temperature, photo-period and inter-specific larval competition that can be applied to three different spatial scales: punctual, local and regional. These spatial scales consider different degrees of spatial complexity and data availability by accounting for both active and passive dispersal of mosquito species as well as for the heterogeneity of the input temperature data. Our overarching aim was to provide a flexible, open-source and user-friendly tool rooted in the most updated knowledge on the species’ biology which could be applied to the management of invasive Aedes populations as well as to more theoretical ecological inquirie

    Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ixodes ricinus</it>, a competent vector of several pathogens, is the tick species most frequently reported to bite humans in Europe. The majority of human cases of Lyme borreliosis (LB) and tick-borne encephalitis (TBE) occur in the north-eastern region of Italy. The aims of this study were to detect the occurrence of endemic and emergent pathogens in north-eastern Italy using adult tick screening, and to identify areas at risk of pathogen transmission. Based on our results, different strategies for tick collection and pathogen screening and their relative costs were evaluated and discussed.</p> <p>Methods</p> <p>From 2006 to 2008 adult ticks were collected in 31 sites and molecularly screened for the detection of pathogens previously reported in the same area (i.e., LB agents, TBE virus, <it>Anaplasma phagocytophilum, Rickettsia </it>spp., <it>Babesia </it>spp., "<it>Candidatus Neoehrlichia mikurensis</it>"). Based on the results of this survey, three sampling strategies were evaluated <it>a</it>-<it>posteriori</it>, and the impact of each strategy on the final results and the overall cost reductions were analyzed. The strategies were as follows: tick collection throughout the year and testing of female ticks only (strategy A); collection from April to June and testing of all adult ticks (strategy B); collection from April to June and testing of female ticks only (strategy C).</p> <p>Results</p> <p>Eleven pathogens were detected in 77 out of 193 ticks collected in 14 sites. The most common microorganisms detected were <it>Borrelia burgdorferi </it>sensu lato (17.6%), <it>Rickettsia helvetica </it>(13.1%), and "<it>Ca. N. mikurensis</it>" (10.5%). Within the <it>B. burgdorferi </it>complex, four genotypes (i.e., <it>B. valaisiana, B. garinii, B. afzelii</it>, and <it>B. burgdorferi </it>sensu stricto) were found. Less prevalent pathogens included <it>R. monacensis </it>(3.7%), TBE virus (2.1%), <it>A. phagocytophilum </it>(1.5%), <it>Bartonella </it>spp. (1%), and <it>Babesia </it>EU1 (0.5%). Co-infections by more than one pathogen were diagnosed in 22% of infected ticks. The prevalences of infection assessed using the three alternative strategies were in accordance with the initial results, with 13, 11, and 10 out of 14 sites showing occurrence of at least one pathogen, respectively. The strategies A, B, and C proposed herein would allow to reduce the original costs of sampling and laboratory analyses by one third, half, and two thirds, respectively. Strategy B was demonstrated to represent the most cost-effective choice, offering a substantial reduction of costs, as well as reliable results.</p> <p>Conclusions</p> <p>Monitoring of tick-borne diseases is expensive, particularly in areas where several zoonotic pathogens co-occur. Cost-effectiveness studies can support the choice of the best monitoring strategy, which should take into account the ecology of the area under investigation, as well as the available budget.</p

    The vector potential of the mosquito Aedes koreicus

    No full text
    Despite the recent establishment and spread of Aedes koreicus mosquitoes in Europe, its natural history and its potential public health impact remain poorly described. This thesis provides the first detailed insights into the biology of Aedes koreicus and its capacity to transmit arboviral diseases. Field work in Italy evaluated a variety of surveillance techniques for this species and its propensity to bite humans. A laboratory colony established in Australia was used to characterise its reproductive biology and its ability to transmit chikungunya virus. The findings help us understand the invasion risks and the public health threat posed by Aedes koreicus</I

    The Vector Potential of the Mosquito Aedes koreicus

    No full text

    Development of Dirofilaria immitis within the mosquito Aedes (Finlaya) koreicus, a new invasive species for Europe

    Get PDF
    Background: Over the recent decades, container-breeding mosquito species belonging to the genus Aedes have frequently been recorded far from their place of origin. Aedes koreicus was first reported in north-eastern Italy in 2011, in a region endemic for Dirofilaria immitis, the agent of canine heartworm disease. The vector competence of Ae. koreicus for D. immitis was here tested under laboratory conditions, by infecting mosquitoes with a local strain of D. immitis. Methods: Blood containing 3000 microfilariae/ml was offered to 54 mosquitoes (T group) while 29 were left as a control (C group). Mosquitoes killed at scheduled days post infection (dpi) and naturally dead were divided in head, thorax and abdomen and examined for D. immitis larval stages by dissection under a microscope and molecularly. Results: Of the 45 engorged mosquitoes in T, 32 (71.1%) scored positive for D. immitis larval stages. L3 were found as early as 8 dpi in the Malpighian tubules and then in the thorax, salivary glands, palp and proboscis. At the end of the study a total of 18 mosquitoes developed L3 giving an estimated infection rate at 12 dpi of 68.2% and a vector efficiency index of 25.2%. The rate of mortality in T group within the first 9 days post infection was significantly higher in T group (47.6%) than in C group (8.3%) (p∈<∈0.01). The concordance between microscopy and PCR was high (0.8-0.9), however, a positivity for D. immitis in the head was found molecularly at 13 dpi, three days before microscopy. Conclusions: Aedes koreicus, a new invasive species for Europe, is most likely a competent vector of D. immitis being of potential relevance in the natural cycle of the parasite. This poses a new threat for animal and human health in endemic areas for dirofilariosis and enhances the risk of spreading the infection in previously non-endemic areas. These results stress the importance of active surveillance and control strategies to minimize the risk of introduction of invasive alien species

    Laboratory colonization of the European invasive mosquito Aedes (Finlaya) koreicus

    Get PDF
    BACKGROUND Aedes (Finlaya) koreicus (Edwards) is a mosquito that has recently entered Europe from Asia. This species is considered a potential threat to newly colonized territories, but little is known about its capacity to transmit pathogens or ability to compete with native mosquito species. The establishment of a laboratory colony is a necessary first step for further laboratory studies on the biology, ecology and vector competence of Ae. koreicus. RESULTS A self-mating colony was established at QIMR Berghofer Medical Research Institute (Brisbane, Australia) from eggs of the F1 progeny of individuals collected as free-living larvae in northeastern Italy (Belluno province). Mosquitoes are currently maintained on both defibrinated sheep blood provided via an artificial membrane system and human blood from volunteers. Larvae are maintained in rain water and fed with Tetramin® fish food (©2015 Spectrum Brands - Pet, Home and Garden Division, Tetra-Fish). Morphometric measurements related to body size were taken and a fecundity index, based on wing length, was calculated. An in vivo technique for differentiating male and female pupae has been optimized. Our findings provide the basis for further studies on the ecology and physiology of Ae. koreicus. CONCLUSION We describe the establishment of an Ae. koreicus colony in the laboratory and identify critical requirements for the maintenance of this mosquito species under artificial conditions. The laboratory colony will facilitate studies investigating the vector potential of this species for human pathogens

    First Report of the Detection of DENV1 in Human Blood Plasma with Near-Infrared Spectroscopy

    No full text
    Dengue virus (DENV) is the world&rsquo;s most common arboviral infection, with an estimated 3.9 million people at risk of the infection, 100 million symptomatic cases and 10,000 deaths per year. Current diagnosis for DENV includes the use of molecular methods, such as polymerase chain reaction, which can be costly for routine use. The near-infrared spectroscopy (NIR) technique is a high throughput technique that involves shining a beam of infrared light on a biological sample, collecting a reflectance spectrum, and using machine learning algorithms to develop predictive algorithms. Here, we used NIR to detect DENV1 artificially introduced into whole blood, plasma, and serum collected from human donors. Machine learning algorithms were developed using artificial neural networks (ANN) and the resultant models were used to predict independent samples. DENV in plasma samples was detected with an overall accuracy, sensitivity, and specificity of 90% (N = 56), 88.5% (N = 28) and 92.3% (N = 28), respectively. However, a predictive sensitivity of 33.3% (N = 16) and 80% (N = 10) and specificity of 46.7% (N = 16) and 32% (N = 10) was achieved for detecting DENV1 in whole blood and serum samples, respectively. DENV1 peaks observed at 812 nm and 819 nm represent C-H stretch, peaks at 1130&ndash;1142 nm are related to methyl group and peaks at 2127 nm are related to saturated fatty groups. Our findings indicate the potential of NIR as a diagnostic tool for DENV, however, further work is recommended to assess its sensitivity for detecting DENV in people naturally infected with the virus and to determine its capacity to differentiate DENV serotypes and other arboviruses
    corecore